
Functions	vs.	Classes

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	9.3

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Goals	for	this	Lesson

• In	this	lesson,	we’ll	illustrate	the	relationship	
between	the	functional	version	of	the	shapes	
and	the	object-oriented	version.

2

System	Requirements
• Represent	three	kinds	of	shapes:
– circle,	
– square
– composite	of	two	shapes	

• Operations	on	shapes
– weight	:	Shape	->	Number

• RETURNS:	the	weight	of	the	given	shape,	assuming	that	each	
shape	weighs	1	gram	per	pixel	of	area

– add-to-scene	:	Shape	Scene	->	Scene
• RETURNS:	a	scene	like	the	given	one,	except	that	the	given	
shape	has	been	painted	on	it.

3

Code	outline	(functional	version)
(define-struct my-circle (x y r color))
(define-struct my-square (x y l color))
(define-struct my-composite (front back))

;; A Shape is one of
;; -- (make-my-circle Number Number Number ColorString)
;; -- (make-my-square Number Number Number ColorString)
;; -- (make-my-composite Shape Shape)

4

Code	outline	(2)
;; weight : Shape -> Number
;; GIVEN: a shape
;; RETURNS: the weight of the shape, assuming that each
;; shape weighs 1 gram per pixel of area.
;; STRATEGY: Use template for Shape on s

(define (weight s)
(cond

[(my-circle? s) (my-circle-weight s)]
[(my-square? s) (my-square-weight s)]
[(my-composite? s) (my-composite-weight s)]))

;; add-to-scene : Shape Scene -> Scene
;; RETURNS: a scene like the given one, but with the
;; given shape painted on it.
;; STRATEGY: Use template for Shape on s

(define (add-to-scene s scene)
(cond

[(my-circle? s) (my-circle-add-to-scene s scene)]
[(my-square? s) (my-square-add-to-scene s scene)]
[(my-composite? s) (my-composite-add-to-scene s scene)]))

5

6	small	functions	left	to	write:
• my-circle-add-to-scene
• my-square-add-to-scene
• my-composite-add-to-

scene
• my-circle-weight
• my-square-weight
• my-composite-weight

In	real	code,	I	probably	
wouldn’t	 break	these	out	
into	help	functions,	but	
I’ve	done	it	here	to	help	
make	my	point.	

(define (my-circle-weight s) (* pi (my-circle-r s) (my-circle-r s)))
(define (my-square-weight s) (* (my-square-l s) (my-square-l s)))
(define (my-composite-weight s) (+ (weight (my-composite-front s))

(weight (my-composite-back s))))

(define (my-composite-add-to-scene s scene)
;; paint the back image first,
;; then the front image
(add-to-scene (my-composite-front s)

(add-to-scene (my-composite-back s)
scene)))

A	few	of		the	help	functions

6

See	how	this	recurs	back		
through	weight

Code		Outline	(OO	version)
;;; INTERFACE:

;; all geometric shapes support these methods in all contexts
;; a Shape is an object of a class that implements Shape<%>.

(define Shape<%>
(interface ()

;; weight : -> Number
;; RETURNS: the weight of this shape
weight

;; add-to-scene : Scene -> Scene
;; RETURNS: a scene like the given one, but with this shape
;; painted on it.
add-to-scene

))

7

Code	Outline	(OO:2)
;; A Circle is a
;; (new Circle% [x Integer][y Integer]
;; [r Integer][c ColorString])
;; REPRESENTS: a circle on the canvas
(define Circle%

(class* object% (Shape<%>)
(init-field
x ; Integer, x-position of center
y ; Integer, y-position of center
r ; Integer, radius
c) ; ColorString, color of circle

(field [IMG (circle r "solid" c)])

(super-new)

;; weight : -> Integer
;; RETURNS: the weight of this shape
;; DETAILS: this shape is a circle
;; STRATEGY: combine simpler functions
(define/public (weight) (* pi r r))

;; add-to-scene : Scene -> Scene
;; RETURNS: a scene like the given one,
;; but with this shape painted on it.
;; DETAILS: this shape is a circle
;; STRATEGY: call a more general function
(define/public (add-to-scene s)

(place-image IMG x y s))

))

8

For	each	method,	we	copy	down	the	
contract	and	purpose	 statement	from	
the	interface,	with	perhaps	additional	
details	relating	to	this	class.

Code	Outline	(OO:3)
;; A Square is a (new Square% [x Integer][y Integer][l Integer][c ColorString])

;; REPRESENTS: a square parallel to sides of canvas
(define Square%
(class* object% (Shape<%>)
(init-field x ; Integer, x pixels of center from left

y ; Integer, y pixels of center from top
l ; Integer, length of one side
c) ; ColorString

(field [IMG (rectangle l l "solid" c)])

(super-new)

;; weight : -> Real
;; RETURNS: the weight of this shape
;; DETAILS: this shape is a square
;; STRATEGY: combine simpler functions

(define/public (weight) (* l l))

;; add-to-scene : Scene -> Scene
;; RETURNS: a scene like the given one, but with this shape
;; painted on it.
;; DETAILS: this shape is a square
;; STRATEGY: call a more general function

(define/public (add-to-scene s) (place-image IMG x y s))

))

9

Code	Outline	(OO:4)
;; A Composite is a (new Composite% [front Shape][back Shape])
;; a composite of front and back
(define Composite%
(class* object% (Shape<%>)
(init-field
front ; Shape, the shape in front
back ; Shape, the shape in back
)

(super-new)

;; all we know here is that front and back implement Shape<%>.
;; we don't know if they are circles, squares, or other composites!

;; weight : -> Number
;; RETURNS: the weight of this shape
;; DETAILS: this shape is a composite
;; STRATEGY: recur on the components
(define/public (weight) (+ (send front weight)

(send back weight)))

;; add-to-scene : Scene -> Scene
;; RETURNS: a scene like the given one, but with this shape
;; painted on it.
;; DETAILS: this shape is a composite
;; strategy: recur on the components
(define/public (add-to-scene scene)
(send front add-to-scene
(send back add-to-scene scene)))

))

10

The	Big	Picture

• The	functional	version	and	the	OO	version	are	
really	the	same.		They	just	have	the	pieces	
grouped	differently.

• Here	are	a	couple	of	slides	that	illustrate	what	
happened.

• We	had	6	little	functions	to	write.		Let's	see	
where	they	wound	up	in	the	functional	
version,	and	then	in	the	OO	version.

11

The	Big	Picture:	Functional

12

my-circle-weight

my-square-weight

my-composite-weight

my-circle-add-to-scene

my-square-add-to-scene

my-composite-add-to-scene

my-circle-weight

my-square-weight

my-composite-weight

my-circle-add-to-scene

my-square-add-to-scene

my-composite-add-to-scene

define	weight:

define	add-to-scene:

When	we	call	weight or	add-to-scene,	
we	use	a	cond expression	to	determine	
what	kind	of	shape	we	were	dealing	
with,	so	the	appropriate	code	is	
evaluated.

The	Big	Picture:	Classes

13

my-circle-weight

my-square-weight

my-composite-weight

my-circle-add-to-scene

my-square-add-to-scene

my-composite-add-to-scene

my-circle-weight

my-square-weight

my-composite-weight

my-circle-add-to-scene

my-square-add-to-scene

my-composite-add-to-scene

class	circle:

class	square:

class	composite:
When	we	invoke	a	method	on	an	
object,	the	object	already	knows	what	
class	it	belongs	to,	so	the	correct	piece	
of	code	is	evaluated	directly.		We	no	
longer	need	to	write	a	cond.

Functional	vs.	OO	organization

Functional: Square Circle Composite

weight

add-to-scene

14

OO: Square Circle Composite

weight

add-to-scene

Here's	another	way	of	visualizing	the	same	thing.	Here	we	have	six	
small	rectangles	corresponding	to	our	six	pieces	of	functionality.

In	the	functional	organization,	all	the	pieces	
corresponding	to	weight are	written	together	
(symbolized	here	by	outlining	them	in	red),	and	
all	the	pieces	corresponding	to	add-to-scene are	
written	together	(outlined	in	green).

In	the	object-oriented	organization,	all	the	
pieces	for	square are	written	together	(the	red	
outline	 in	the	 lower	table),	all	the	pieces	for	
circle are	written	together	(the	orange	outline),	
and	all	the	pieces	for	composite	are	written	
together	(the	purple	outline).

Adding	a	New	Data	Variant

Functional: Square Circle Composite Triangle

weight New	code

add-to-scene New	code

15

OO: Square Circle Composite Triangle

weight New	code

add-to-scene New	code

If	we	add	a	new	kind	of	data,	
such	as	a	triangle,	what	will	
we	need	to	change?

We	will	need	2	pieces	of	code:	
to	compute	the	weight	of	a	
triangle	and	to	display	 it.

In	the	functional	organization,	the	
two	cells	correspond	to	different	
portions	of	our	file,	so	we	will	need	to	
edit	two	pieces	of	our	file:		the	
weight function	and	the	add-to-scene
function.

In	the	object-oriented	organization,	we	will	
add	the	two	pieces	in	a	single	place	in	our	
file:	the	new	triangle class.

Adding	a	New	Operation
Functional: Square Circle Composite

weight

add-to-scene

move new	code	1 new	code	2 new code	3

16

OO: Square Circle Composite

weight

add-to-scene

move new	code	1 new	code	2 new	code	3

If	we	add	a	new	operation	such	as	move,	what	
needs	to	change?

In	the	functional	 organization,	we	add	the	new	
code	in	a	single	function	 definition,	 the	function	
move,	symbolized	by	the	blue	outline	above.

In	the	object-oriented	organization,	
we	must	add	a	movemethod	in	each	
of	our	classes.

Extensibility

Functional	Org. O-O	Org.
New Data	Variant requires	editing	in	many	

places
all edits	in	one	place

New	Operation all edits	in	one	place requires	editing	in	many	
places

17

What's	the	tradeoff?
• Object-oriented	organization	is	better	when	new	data	
variants	are	more	likely	than	new	operations.

• Functional	organization	is	better	when	new	operations	
are	more	likely	than	new	data	variants.

• In	the	real	world,	you	may	not	have	a	choice:	
– this	decision	is	up	to	the	system	architects
– or	may	need	compatibility	with	an	existing	system

• There	are	ways	to	get	the	best	of	both	worlds	
– but	these	are	beyond	the	scope	of	this	course
– this	is	called	"the	expression	problem"

18

Summary

• You	should	now	be	able	to	draw	diagrams	that	
explain	the	organization	of	O-O	programs	vs.	
functional	programs.

19

Next	Steps

• Review	examples	09-3	through	09-5	in	the	
examples	folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

20

